Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
STAR Protoc ; 3(2): 101250, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35313711

RESUMO

Oxygen in vertebrates is generally provided through respiratory organs and blood vessels. This protocol describes transcardial injection, vascular distribution, and accumulation of phototrophic microalgae in the brain of Xenopus laevis tadpoles. Following tissue isolation, oxygen dynamics and neuronal activity are recorded in semi-intact whole-head preparations. Illumination of such microalgae-filled preparations triggers the photosynthetic production of oxygen in the brain that, under hypoxic conditions, rescues neuronal activity. This technology is potentially able to ameliorate consequences of hypoxia under pathological conditions. For complete details on the use and execution of this protocol, please refer to Özugur et al. (2021).


Assuntos
Microalgas , Animais , Encéfalo , Neurônios , Oxigênio , Xenopus laevis
2.
Cells ; 11(3)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35159329

RESUMO

The oligodendrocyte progenitors (OPCs) are at the front of the glial reaction to the traumatic brain injury. However, regulatory pathways steering the OPC reaction as well as the role of reactive OPCs remain largely unknown. Here, we compared a long-lasting, exacerbated reaction of OPCs to the adult zebrafish brain injury with a timely restricted OPC activation to identify the specific molecular mechanisms regulating OPC reactivity and their contribution to regeneration. We demonstrated that the influx of the cerebrospinal fluid into the brain parenchyma after injury simultaneously activates the toll-like receptor 2 (Tlr2) and the chemokine receptor 3 (Cxcr3) innate immunity pathways, leading to increased OPC proliferation and thereby exacerbated glial reactivity. These pathways were critical for long-lasting OPC accumulation even after the ablation of microglia and infiltrating monocytes. Importantly, interference with the Tlr1/2 and Cxcr3 pathways after injury alleviated reactive gliosis, increased new neuron recruitment, and improved tissue restoration.


Assuntos
Células Precursoras de Oligodendrócitos , Animais , Encéfalo , Gliose/metabolismo , Imunidade Inata , Células Precursoras de Oligodendrócitos/metabolismo , Peixe-Zebra
3.
iScience ; 24(10): 103158, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34755084

RESUMO

Neuronal activity in the brain depends on mostly aerobic generation of energy equivalents and thus on a constant O2 supply. Oxygenation of the vertebrate brain has been optimized during evolution by species-specific uptake and transport of O2 that originally derives from the phototrophic activity of prokaryotic and eukaryotic organisms in the environment. Here, we employed a concept that exploits transcardial injection and vascular distribution of unicellular green algae or cyanobacteria in the brain of Xenopus laevis tadpoles. Using oxygen measurements in the brain ventricle, we found that these microorganisms robustly produce sizable amounts of O2 upon illumination. In a severe hypoxic environment, when neuronal activity has completely ceased, the photosynthetic O2 reliably provoked a restart and rescue of neuronal activity. In the future, phototrophic microorganisms might provide a novel means to directly increase oxygen levels in the brain in a controlled manner under particular eco-physiological conditions or following pathological impairments.

4.
J Neurol ; 267(Suppl 1): 62-75, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32915311

RESUMO

Loss of peripheral vestibular function provokes severe impairments of gaze and posture stabilization in humans and animals. However, relatively little is known about the extent of the instantaneous deficits. This is mostly due to the fact that in humans a spontaneous loss often goes unnoticed initially and targeted lesions in animals are performed under deep anesthesia, which prevents immediate evaluation of behavioral deficits. Here, we use isolated preparations of Xenopus laevis tadpoles with functionally intact vestibulo-ocular (VOR) and optokinetic reflexes (OKR) to evaluate the acute consequences of unilateral VIIIth nerve sections. Such in vitro preparations allow lesions to be performed in the absence of anesthetics with the advantage to instantly evaluate behavioral deficits. Eye movements, evoked by horizontal sinusoidal head/table rotation in darkness and in light, became reduced by 30% immediately after the lesion and were diminished by 50% at 1.5 h postlesion. In contrast, the sinusoidal horizontal OKR, evoked by large-field visual scene motion, remained unaltered instantaneously but was reduced by more than 50% from 1.5 h postlesion onwards. The further impairment of the VOR beyond the instantaneous effect, along with the delayed decrease of OKR performance, suggests that the immediate impact of the sensory loss is superseded by secondary consequences. These potentially involve homeostatic neuronal plasticity among shared VOR-OKR neuronal elements that are triggered by the ongoing asymmetric activity. Provided that this assumption is correct, a rehabilitative reduction of the vestibular asymmetry might restrict the extent of the secondary detrimental effect evoked by the principal peripheral impairment.


Assuntos
Reflexo Vestíbulo-Ocular , Vestíbulo do Labirinto , Animais , Movimentos Oculares , Humanos , Larva , Xenopus laevis
5.
J Neurol ; 266(Suppl 1): 93-100, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31270663

RESUMO

Vestibulo-ocular reflexes (VOR) are mediated by frequency-tuned pathways that separately transform the different dynamic and static aspects of head motion/position-related sensory signals into extraocular motor commands. Voltage-dependent potassium conductances such as those formed by Kv1.1 are important for the ability of VOR circuit elements to encode highly transient motion components. Here we describe the impact of the Kv1.1 channel blocker 4-aminopyridine (4-AP) on spontaneous and motion-evoked discharge of superior oblique motoneurons. Spike activity was recorded from the motor nerve in isolated preparations of Xenopus laevis tadpoles. Under static conditions, bath application of 1-10 µM 4-AP increased the spontaneous firing rate and provoked repetitive bursts of spikes. During motion stimulation 4-AP also augmented and delayed the peak firing rate suggesting that this drug affects the magnitude and timing of vestibular-evoked eye movements. The exclusive Kv1.1 expression in thick vestibular afferent fibers in larval Xenopus at this developmental stage suggests that the altered extraocular motor output in the presence of 4-AP mainly derives from a firing rate increase of irregular firing vestibular afferents that propagates along the VOR circuitry. Clinically and pharmacologically, the observed 4-AP-mediated increase of peripheral vestibular input under resting and dynamic conditions can contribute to the observed therapeutic effects of 4-AP in downbeat and upbeat nystagmus as well as episodic ataxia type 2, by an indirect increase of cerebellar Purkinje cell discharge.


Assuntos
4-Aminopiridina/administração & dosagem , Movimentos Oculares/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/administração & dosagem , Reflexo Vestíbulo-Ocular/efeitos dos fármacos , Vestíbulo do Labirinto/efeitos dos fármacos , Animais , Movimentos Oculares/fisiologia , Feminino , Masculino , Reflexo Vestíbulo-Ocular/fisiologia , Vestíbulo do Labirinto/fisiologia , Xenopus laevis
6.
Science ; 348(6236): 789-93, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25977550

RESUMO

Adult neural stem cells are the source for restoring injured brain tissue. We used repetitive imaging to follow single stem cells in the intact and injured adult zebrafish telencephalon in vivo and found that neurons are generated by both direct conversions of stem cells into postmitotic neurons and via intermediate progenitors amplifying the neuronal output. We observed an imbalance of direct conversion consuming the stem cells and asymmetric and symmetric self-renewing divisions, leading to depletion of stem cells over time. After brain injury, neuronal progenitors are recruited to the injury site. These progenitors are generated by symmetric divisions that deplete the pool of stem cells, a mode of neurogenesis absent in the intact telencephalon. Our analysis revealed changes in the behavior of stem cells underlying generation of additional neurons during regeneration.


Assuntos
Células-Tronco Adultas/citologia , Encéfalo/citologia , Encéfalo/fisiologia , Células-Tronco Neurais/citologia , Neurogênese , Neurônios/citologia , Regeneração , Peixe-Zebra/fisiologia , Animais , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Divisão Celular , Neuroimagem , Telencéfalo/citologia , Telencéfalo/lesões , Telencéfalo/fisiologia
7.
Eur. j. anat ; 13(3): 133-143, dic. 2009. ilus
Artigo em Inglês | IBECS | ID: ibc-107639

RESUMO

During recent years a key role as morphogen has been postulated for the neurotransmitter acetylcholine in the developing Central Nervous System. Acetylcholine released from growing axons regulates growth, differentiation and plasticity. The acetylcholine distribution is frequently defined by acetylcholinesterase and choline acetyltransferase expression patterns. The cholinergic/cholinoceptive system in the adult zebrafish retina has been described. Nevertheless, there are no data regarding the developing retina. The acetylcholinesterase and choline acetyltransferase distribution patterns during zebrafish retinal development are very similar. In both cases the first positive elements appear in the plexiform layers and in later stages reactive amacrine cells have been observed in the ganglion cell layer and inner nuclear layer. In the adult retina a cholinergic and cholinoceptive neuropile band is observed in the inner plexiform layer. Displaced amacrine cells and amacrine cells positive to both markers have been observed. Transient expressions of choline acetyltransferase in the optic nerve and outer plexiform layer and of acetylcholinesterase in amacrine cells and displaced amacrine cells are observed during retinal development coinciding with the arrangement of the pioneering retinal projections into the optic tectum. The mature distribution pattern of the cholinergic/ cholinoceptive system in the adult retina is conserved along the phylogenetic scale, thus it seems to be a primary feature acquired relatively early during the evolution of vertebrates (AU)


No disponible


Assuntos
Animais , Acetilcolinesterase , Colina O-Acetiltransferase , Retina/fisiologia , Células Amácrinas/fisiologia , Células Ganglionares da Retina/fisiologia , Peixes/fisiologia , Diferenciação Celular , Plasticidade Neuronal , Nervo Óptico/crescimento & desenvolvimento
8.
Brain Res Bull ; 66(4-6): 421-5, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16144624

RESUMO

We have analyzed the distribution pattern of choline acetyltransferase (ChAT) in the zebrafish brain and retina during ontogeny. ChAT-immunoreactive (ChAT-ir) neurons are observed in the prosencephalon from 60 h postfertilization (hpf) onwards, exclusively in the preoptic area (basal plate of p6) derived from the secondary prosencephalon. In the mesencephalon, ChAT-ir cells are observed in both the optic tectum and the tegmentum. Stained cells in the tegmentum are observed from 60 hpf onwards, while in the optic tectum they appear after hatching. In the rhombencephalon, ChAT-ir cells are first observed in the isthmic region (rh1) and in the medulla oblongata (rh5-rh7) at the end of embryonic life. The rhombencephalic cholinergic cell groups develop in a gradual caudorostral sequence. Motoneurons of the spinal cord are ChAT-ir from 48 hpf onwards. The retina displays ChAT-ir neuropil in both the inner and outer plexiform layers from embryonic life, whereas stained amacrine cells are only observed after hatching. The staining in the outer plexiform layer gradually decreases during juvenile development. The optic nerve axons show a transient expression of ChAT at the end of embryonic development. The early presence of ChAT immunolabeling suggests an important neuromodulator role for acetylcholine in the first developmental stages.


Assuntos
Encéfalo/crescimento & desenvolvimento , Colina O-Acetiltransferase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Retina/crescimento & desenvolvimento , Animais , Encéfalo/enzimologia , Imuno-Histoquímica/métodos , Retina/enzimologia , Peixe-Zebra/fisiologia
9.
Brain Res Bull ; 66(4-6): 546-9, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16144647

RESUMO

The general organization of the cholinergic system in the central nervous system is similar among vertebrates, though fish show higher variability. Thus, in zebrafish, cholinergic cells are absent from the habenula and the rhombencephalic reticular formation, where such neurons are present in most vertebrate species analyzed. In this work, we compared the distribution of choline acetyltransferase in the central nervous system of both zebrafish and tench, in order to investigate whether these divergences in the distribution of cholinergic cells in zebrafish are species-specific, or a feature shared by members of the cyprinid family. Our data show that these two cyprinid possess in common some peculiarities in their cholinergic system that are not present in the rest of fish analyzed (e.g. absence of cholinergic cells in the habenula and their presence in the descendent octaval nucleus). Nonetheless, some cholinergic cells were observed in the dorsal thalamus and rhombencephalic reticular nuclei of the tench, which were absent in the same regions in zebrafish. The comparative analysis suggests a divergent evolution of the cholinergic system among close-related cyprinid species.


Assuntos
Sistema Nervoso Central/enzimologia , Colina O-Acetiltransferase/metabolismo , Cyprinidae/metabolismo , Animais , Sistema Nervoso Central/citologia , Imuno-Histoquímica/métodos , Neurônios/metabolismo , Especificidade da Espécie , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...